The Solution:
The formula for the equation of an ellipse is
[tex]\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1[/tex]In this case,
[tex]\begin{gathered} h=-2 \\ k=-2 \\ a=2 \\ b=6 \end{gathered}[/tex]Substituting the above values in the formula above, we get
[tex]\begin{gathered} \frac{(x--2)^2}{2^2}+\frac{(y--2)^2}{6^2}=1 \\ \\ \frac{(x+2)^2}{4^{}}+\frac{(y+2)^2}{36^{}}=1 \end{gathered}[/tex]Therefore, the equation of the ellipse is
[tex]\frac{(x+2)^2}{4^{}}+\frac{(y+2)^2}{36^{}}=1[/tex]