please help me solve this, I got: pi/2, 4pi/3, and 5pi/3. maybe i'm missing a solution or didn't eliminate one properly? because it was wrong. thank you for any help!

The expression is given as
[tex]\sin 2x=\sqrt[]{3}\text{ cosx}[/tex]Simplify the expression by using the identity
sin2x=2 sinx cosx.
Substitute the identity in the expression above
[tex]2\sin x\text{ cosx=}\sqrt[]{3}\cos x[/tex][tex]2\sin x\cos x-\sqrt[]{3}\cos x=0[/tex][tex]\cos x(2\sin x-\sqrt[]{3})=0[/tex][tex]\cos x=0,\sin x=\frac{\sqrt[]{3}}{2}[/tex]For cosx =0,
[tex]x=\frac{\pi}{2},\frac{3\pi}{2}[/tex]For
[tex]\sin x=\frac{\sqrt[]{3}}{2}[/tex][tex]x=\frac{\pi}{3},\frac{2\pi}{3}[/tex]Hence the solution of x for the given interval [0,2pi) is
[tex]x=\frac{\pi}{2},\frac{3\pi}{2},\frac{\pi}{3},\frac{2\pi}{3}[/tex]