Recall that
[tex]\log _ax[/tex]is defined for all positive real numbers, therefore:
[tex]\text{Dom}(0.7\log _3(x))=(0,\infty)\text{.}[/tex]Also, since the range of log_3(x) is all real numbers, then:
[tex]Ran(0.7\log _3(x))=(-\infty,\infty).[/tex]Now, to find the x-intercept, we set y(x)=0:
[tex]0.7\log _3(x)=0.[/tex]Dividing the above equation by 0.7 we get:
[tex]\begin{gathered} \frac{0.7}{0.7}\log _3(x)=\frac{0}{0.7}, \\ \log _3(x)=0. \end{gathered}[/tex]Solving the above equation for x we get:
[tex]\begin{gathered} 3^{\log _3(x)}=3^0, \\ x=1. \end{gathered}[/tex]Therefore, the x-intercept has coordinates (1,0).
Since the function is only defined at (0,∞), there is no y-intercept.
Finally, the function has an asymptote at x=0.
Answer:
Domain:
[tex](0,\infty).[/tex]Range:
[tex](-\infty,\infty).[/tex]X-intercept:
[tex](1,0)\text{.}[/tex]Y-intercept: There is no y-intercept.
Asymptote:
[tex]x=0.[/tex]