What does sin(pi + theta) + cos(pi/2 - theta) simplify to? sin theta + cos theta 2 cos theta 0 1

Answer:
0
Explanation:
We utilise the following two properties of sines and cosines to simplify our expression.
[tex]\sin(\pi+x)=-\sin(x)[/tex]and
[tex]\cos(\frac{\pi}{2}-x)=\sin(x)[/tex]Substituting the above simplifications into our expression gives
[tex]\sin(\pi+x)+\cos(\frac{\pi}{2}-x)\rightarrow-\sin(x)+\sin(x)=0[/tex]Therefore we conclude that
[tex]\boxed{\sin(\pi+x)+\cos(\frac{\pi}{2}-x)=0.}[/tex]