Answer:
[tex]\begin{gathered} \text{Solution A = 21 ounces} \\ \text{Solution B = 9 ounces} \end{gathered}[/tex]Explanation:
Let the number of ounces of solution A be a
Let the number of ounces of solution B be b
The sum total of the ounces is 30
Thus:
[tex]a\text{ + b = 30}[/tex]Now, let us work with the percentages
Mathematically, we have it that:
[tex]\begin{gathered} 20\text{ \% salt solution A + 70\% salt solution B = 35 \% salt total} \\ 0.2(a)\text{ + 0.7(b) = 0.35(30)} \\ 0.2a\text{ + 0.7b = 10.5} \end{gathered}[/tex]The two linear equations we are to solve simultaneously are:
[tex]\begin{gathered} a\text{ + b = 30} \\ 0.2a\text{ + 0.7b = 10.5} \end{gathered}[/tex]Multiply equation 1 by 0.2 and equation 2 by 1: we have:
[tex]\begin{gathered} 0.2a\text{ + 0.2b = 6} \\ 0.2a\text{ + 0.7b = 10.5} \\ 0.7b\text{ - 0.2b = 10.5-6} \\ 0.5b\text{ = 4.5} \\ b\text{ = }\frac{4.5}{0.5} \\ b\text{ = 9 ounces} \\ a\text{ + b = 30} \\ a\text{ = 30-b} \\ a\text{ = 30-9} \\ a\text{ = 21 ounces} \end{gathered}[/tex]