Respuesta :

Given:

[tex]_{12}C_3[/tex]

Find-: Evaluate the expression.

Sol:

Formula:

[tex]_nC_r=\frac{n!}{r!(n-r)!}[/tex]

So the value is:

[tex]_{12}C_3=\frac{12!}{3!(12-3)!}[/tex][tex]\begin{gathered} =\frac{12!}{3!(12-3)!} \\ \\ =\frac{12\times11\times10\times9!}{3!\times9!} \\ \\ =\frac{12\times11\times10}{3!} \end{gathered}[/tex]

value is:

[tex]\begin{gathered} =\frac{12\times11\times10}{3!} \\ \\ =\frac{12\times11\times10}{3\times2\times1} \\ \\ =\frac{12\times11\times10}{6} \\ \\ =2\times11\times10 \\ \\ =22\times10 \\ \\ =220 \end{gathered}[/tex]

So the value is 220.

RELAXING NOICE
Relax