To get the monthly payment from the parameter given, the formula below will be used
[tex]\begin{gathered} M=\frac{P\times r}{1-(1+r)^{-n}} \\ M=\text{monthly payment; P=difference betw}een\text{ the down payment and the MRSP} \\ r=\text{rate; n=duration} \end{gathered}[/tex][tex]\begin{gathered} r=\frac{7}{100}\times\frac{1}{12}=\frac{0.07}{12}=0.006 \\ n=12\times3=36 \\ P=15000-1500=13500 \end{gathered}[/tex]Substituting into the formula
[tex]\begin{gathered} M=\frac{13500\times0.006}{1-(1+0.006)^{-36}} \\ M=\frac{81}{1-(1.006)^{-36}} \\ M=\frac{81}{1-0.8063} \\ M=\frac{81}{0.1937} \\ M=\text{ \$418.17} \end{gathered}[/tex]For the Leasing:
[tex]\text{Finance cost =(Net Capitalized cost+Residual Value)}\times money\text{ factor}\times lease\text{ term}[/tex][tex]\begin{gathered} \text{Net Capitalized cost=15000-1500+1250=14750} \\ \text{ Residual value =0.75}\times15000=11250 \\ \text{money factor=0.00271} \\ \text{lease term=12}\times3=36 \end{gathered}[/tex][tex]\begin{gathered} \text{Depreciation cost=}\frac{Net\text{ capitalize cost - residual value}}{term} \\ =\frac{15000-11250}{36}=69.44 \end{gathered}[/tex]Substituting the values into the formula
[tex]\begin{gathered} \text{Finance }\cos t\text{=(14750+11250)}\times0.00271 \\ =26000\times0.00271 \\ =\text{ \$}70.46 \\ \text{Monthly payment=depreciation cost + finance cost} \\ =69.44+70.46=\text{ \$139.90} \end{gathered}[/tex]The monthly payment should he buys is $418.17 while the monthly payment should he lease is $139.90
Hence, Tim should lease since he would be paying less amount of $139.90