To answer this question, we have:
[tex]\frac{-5x+10}{-5}[/tex]This is equivalent to the following:
[tex]\frac{-5x}{-5}+\frac{10}{-5}[/tex]Then we have:
[tex]\begin{gathered} \frac{-5x}{-5}=\frac{5x}{5} \\ \frac{10}{-5}=-\frac{10}{5} \end{gathered}[/tex]Therefore, we have:
[tex]\frac{5x}{5}-\frac{10}{5}[/tex]If we simplify both fractions, we finally have:
[tex]\begin{gathered} \frac{5x}{5}\Rightarrow\frac{5}{5}=1,\frac{a}{a}=1 \\ \frac{5x}{5}=1\cdot x=x \end{gathered}[/tex]And
[tex]-\frac{10}{5}=-2[/tex]Then after simplification, we finally have:
[tex]\begin{gathered} x-2 \\ \end{gathered}[/tex]In summary, the process was as follows:
[tex]\begin{gathered} \frac{-5x+10}{-5}=\frac{-5x}{-5}+\frac{10}{-5}=\frac{-5}{-5}x-\frac{10}{5}=\frac{5x}{5}-\frac{10}{5} \\ \frac{5}{5}x-\frac{10}{5}=x-2 \end{gathered}[/tex]The final result is, then, x - 2.