I have an ACT practice problem that I’m having trouble on

Given below the logarithm terms
[tex]\log _7x+\log _7y-\log _7z[/tex]In order to resolve the above problem, we will apply two properties of the logarithm.
These properties are,
[tex]\begin{gathered} \log _c\mleft(a\mright)+\log _c\mleft(b\mright)=\log _c\mleft(ab\mright)\ldots\ldots.1 \\ \quad \log _c\mleft(a\mright)-\log _c\mleft(b\mright)=\log _c\mleft(\frac{a}{b}\mright)\ldots\ldots.2 \end{gathered}[/tex]Hence,
[tex]\begin{gathered} \log _7x+\log _7y-\log _7z=\log _7\frac{\mleft(x\times y\mright)}{z} \\ \log _7x+\log _7y-\log _7z=\log _7\mleft(\frac{xy}{z}\mright) \end{gathered}[/tex]Therefore,
[tex]\log _7x+\log _7y-\log _7z=\log _7(\frac{xy}{z})[/tex]The error he did was that instead of multiplying, he added, and also instead of dividing he subtracted.
The correct answer is,
[tex]\log _7(\frac{xy}{z})[/tex]