Respuesta :

We are given the following equation:

[tex]x^2-4x+29=0[/tex]

This an equation of the form:

[tex]ax^2+bx+c=0[/tex]

This solution is given by the quadratic formula:

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

Replacing the values:

[tex]x=\frac{-(-4)\pm\sqrt[]{(-4)^2-4(1)(29)}}{2(1)}[/tex]

Solving the operations:

[tex]x=\frac{4\pm\sqrt[]{16-116}}{2}[/tex][tex]x=\frac{4\pm\sqrt[]{-100}}{2}[/tex]

We have two possible complex solutions:

[tex]\begin{gathered} x=\frac{4\pm10i}{2} \\ \end{gathered}[/tex]

Separating the denominator:

[tex]x=2\pm5i[/tex]

Or in radical form:

[tex]x=2\pm5\sqrt[]{-1}[/tex]

RELAXING NOICE
Relax