First, let's make a diagram to visualize the problem.
According to the law of reflection, we know that
[tex]\alpha=65[/tex]Also, these two angles are complementary so,
[tex]\alpha+\lambda=90[/tex]Let's find lambda.
[tex]\begin{gathered} 65+\lambda=90 \\ \lambda=90-65 \\ \lambda=25 \end{gathered}[/tex]Now, we can find angle gamma using the interior angles of a theorem (triangle).
[tex]\begin{gathered} \lambda+120+\gamma=180 \\ 25+120+\gamma=180 \\ \gamma=180-145 \\ \gamma=35 \end{gathered}[/tex]Then, we observe that angle gamma and angle beta are complementary, so let's find beta.
[tex]\begin{gathered} \gamma+\beta=90 \\ 35+\beta=90 \\ \beta=90-35 \\ \beta=55 \end{gathered}[/tex]At last, by the law of reflection, we state that
[tex]\theta=\beta=55[/tex]