Use the values provided to calculate each of missing values (need to answer questions a-c pics attached)


b) The general point-slope equation of a line is:
[tex]y=m\cdot(x-x_1)+y_1._{}[/tex]Where:
• (x1, y1) is a point of the line,
,• m is the slope, given by:
[tex]m=\frac{y_2-y_1}{x_2-x_1},[/tex]where (x1, y1) and (x2, y2) are two points of the line.
From the table, we have the points:
• (x1, y1) = (5.3, 17.46),
,• (x2, y2) = (5.9, 17.70).
Replacing these values in the equation of the slope, we get:
[tex]m=\frac{17.70-17.46}{5.9-5.3}=\frac{0.24}{0.6}=0.4.[/tex]Replacing m = 0.4 and (x1, y1) = (5.3, 17.46) in the general equation of the line, we get:
[tex]y=0.4\cdot(x-5.3)+17.46=0.4x-0.4\cdot5.3+17.46=0.4x+15.34.[/tex]The equation of the line is:
[tex]y=0.4x+15.34.[/tex]a) Using the equation of the line, we compute the blank values of y:
[tex]\begin{gathered} x=5.6\rightarrow y=0.4\cdot5.6+15.34=17.58, \\ x=6.3\rightarrow y=0.4\cdot6.3+15.34=17.86, \\ x=8.3\rightarrow y=0.4\cdot8.3+15.34=18.66. \end{gathered}[/tex]Replacing the value y = 18.00 in the equation of the line and solving for x, we get:
[tex]\begin{gathered} 18.00=0.4x+15.34, \\ 0.4x=18.00-15.34, \\ 0.4x=2.66, \\ x=\frac{2.66}{0.4}=6.65. \end{gathered}[/tex]Answer
a) Table
• x = 5.6, y = ,17.58
,• x = 6.3, y = ,17.86
,• x = ,6.65,, y = 18.00
,• x = 8.3, y = ,18.66
b) Equation of the line
y = 0.4x + 15.34
c) These values are the same as the ones in part (a)