Let X be equal to 0.88888....
[tex]X=0.\overline{8}[/tex]With 1 digits in the repeating decimal group, create a second equation by multiplying
both sides by 10
[tex]\begin{gathered} X=0.\overline{8}\text{ \lparen equation 1\rparen} \\ (10)X=(10)0.\overline{8} \\ 10X=8.\overline{8}\text{ \lparen equation 2\rparen} \end{gathered}[/tex]Subtract equation 1, from equation 2
Solve for X
[tex]\begin{gathered} 9X=8 \\ \frac{9X}{9}=\frac{8}{9} \\ X=\frac{8}{9} \\ \\ \text{Therefore, the fraction equivalent of }0.\overline{8}\text{ is }\frac{8}{9}. \end{gathered}[/tex]