a. The given A matrix is:
[tex]A=\begin{bmatrix}{3} & {4} & {} \\ {1} & {-2} & {} \\ {} & {} & {}\end{bmatrix}[/tex]
The determinant of a 2x2 matrix can be found as:
[tex]\begin{gathered} A=\begin{bmatrix}{a} & {b} & {} \\ {c} & {d} & {} \\ {} & {} & {}\end{bmatrix} \\ \det (A)=|A|=a\times d-b\times c \\ \therefore\det (A)=3\times(-2)-1\times4=-6-4=-10 \end{gathered}[/tex]
The determinant of matrix A=-10.
b. The inverse of a 2x2 matrix is given by:
[tex]\begin{gathered} A^{-1}=\frac{1}{\det(A)}\begin{bmatrix}{d} & {-b} & {} \\ {-c} & {a} & {} \\ {} & {} & {}\end{bmatrix} \\ \therefore A^{-1}=\frac{1}{-10}\begin{bmatrix}{-2} & {-4} & {} \\ {-1} & {3} & {} \\ {} & {} & {}\end{bmatrix} \\ \therefore A^{-1}=\begin{bmatrix}{\frac{-2}{-10}} & {\frac{-4}{-10}} & {} \\ {\frac{-1}{-10}} & {\frac{3}{-10}} & {} \\ {} & {} & {}\end{bmatrix}=\begin{bmatrix}{\frac{2}{10}} & {\frac{4}{10}} & {} \\ {\frac{1}{10}} & {-\frac{3}{10}} & {} \\ {} & {} & {}\end{bmatrix} \end{gathered}[/tex]
c. A^-1xC is:
And the result can be found as:
This is the resulting matrix of multiplying A^-1xC.
d. In order to decode the message we need to replace the numbers in the matrix with their corresponding letters according to the alphabet order, then:
19->S, 5->E, 1->A, 18->R, 3->C, 8->H, 0->space, 20->T, 8->H, 5->E, 0->space, 7->G 25->Y, 13->M.
By replacing these letters into the matrix we obtain:
And reading in column order, the decoded message says:
"SEARCH_THE_GYM"