Respuesta :

[tex]\begin{gathered} m\angle KJL=22^{\circ} \\ m\angle KML=22^{\circ} \end{gathered}[/tex]

1) This is a case in which inscribed angles intercept an arc. So we can write out the following about the measure of ∠KJL

[tex]\begin{gathered} m\angle KJL=\frac{1}{2}mKL \\ m\angle KJL=\frac{1}{2}(44) \\ m\angle KJL=22^{\circ} \\ m\angle KML=\frac{1}{2}mKL \\ m\angle KML\cong m\angle KJL \end{gathered}[/tex]

Note that in this case, the same case applies to both angles.

ACCESS MORE
EDU ACCESS