Given:
[tex]\begin{gathered} 2x+4y=-10.2\ldots\ldots\ldots(1) \\ 9x-5y=30\ldots\ldots\ldots(2) \end{gathered}[/tex]To solve for x and y:
Consider the equation (1),
[tex]\begin{gathered} 2x+4y=-10.2 \\ 2x=-10.2-4y \\ x=-5.1-2y\ldots\ldots\ldots(3) \end{gathered}[/tex]Substitute equation (3) in equation (2), we get
[tex]\begin{gathered} 9(-5.1-2y)-5y=30 \\ -45.9-18y-5y=30 \\ -45.9-23y=30 \\ -23y=75.9 \\ y=-3.3 \end{gathered}[/tex]Substitute y=-3.3 in equation (3) we get,
[tex]\begin{gathered} x=-5.1-2(-3.3) \\ x=-5.1+6.6 \\ x=1.5 \end{gathered}[/tex]Hence, the solution is,
[tex](1.5,-3.3)[/tex]