Use the Coulomb's Law to find the other charge:
[tex]F=k\cdot\frac{q_1q_2}{d^2}[/tex]Where k is the Coulomb's constant:
[tex]k=8.99\times10^9N\cdot\frac{m^2}{C^2}[/tex]Isolate one of the charges from the equation:
[tex]\Rightarrow q_2=\frac{d^2F}{kq_1}[/tex]Substitute d=0.1m, F=14.4N, q_1=-4.0μC and the value of k:
[tex]\begin{gathered} q_2=\frac{(0.10m)^2(14.4N)}{(8.99\times10^9N\cdot\frac{m^2}{C^2}^{})(-4.0\mu C)} \\ =\frac{(0.10m)^2(14.4N)}{(8.99\times10^9N\cdot\frac{m^2}{C^2}^{})(-4.0\times10^{-6}C)} \\ =-4.0\times10^{-6}C \\ =-4.0\mu C \end{gathered}[/tex]Notice that since the force is repulsive, both chargest must have the same sign.
Therefore, the answer is:
[tex]-4.0\mu C[/tex]