So you have this expression:
[tex]-\frac{5i}{2i^2}+\frac{1}{2}[/tex]And it is simplified to this:
[tex]-\frac{5i}{2i^2}+\frac{1}{2}=-\frac{5i}{2\cdot(-1)^{}}+\frac{1}{2}[/tex]The property used in this simplification comes from the definition of the imaginary number i. Let's recall that i is defined as:
[tex]i=\sqrt[]{-1}[/tex]Then if we square both sides of this equation we get:
[tex]\begin{gathered} i^2=(\sqrt[]{-1})^2 \\ i^2=-1 \end{gathered}[/tex]And that is the reason behind the simplification performed.