Respuesta :

In this case, we know that

[tex]cos30=\frac{\sqrt[\placeholder{⬚}]{3}}{2}[/tex]

so we can use this value to estimate cosine of 32 degrees.

The local linear approximation is given by

[tex]y-y_1=m\lparen x-x_1)[/tex]

where, in our case,

[tex]\begin{gathered} x=32 \\ x_1=30 \\ y=cos32 \\ y_1=cos30=\frac{\sqrt{3}}{2} \end{gathered}[/tex]

and m is the derivative of the function

[tex]cos\theta[/tex]

evaluated at

[tex]\theta=30\text{ degrees}[/tex]

In this regard, the derivative of cosine of thetat is given by

[tex]\frac{d}{d\theta}cos\theta=-sin\theta[/tex]

then the slope m is given as

[tex]m=\frac{d}{d\theta}cos\theta_{\theta=30}=-s\imaginaryI n30=-\frac{1}{2}[/tex]

Then by substituting this value and the above ones on the local linear approximation, we have

[tex]y-y_1=m\operatorname{\lparen}x-x_1)\Rightarrow cos32-\frac{\sqrt[]{3}}{2}=-\frac{1}{2}\left(32-30\right)[/tex]

which gives

[tex]\begin{gathered} cos32-\frac{\sqrt{3}}{2}=-\frac{1}{2}\left(2\right) \\ cos32-\frac{\sqrt{3}}{2}=-1 \end{gathered}[/tex]

then by moving square root of 3 over 2 to the right hand side, we get

[tex]cos32=-1+\frac{\sqrt[\placeholder{⬚}]{3}}{2}[/tex]

RELAXING NOICE
Relax