use an appropriate local linear approximation to estimate the value of the given quantity.answer q3 only.

In this case, we know that
[tex]cos30=\frac{\sqrt[\placeholder{⬚}]{3}}{2}[/tex]so we can use this value to estimate cosine of 32 degrees.
The local linear approximation is given by
[tex]y-y_1=m\lparen x-x_1)[/tex]where, in our case,
[tex]\begin{gathered} x=32 \\ x_1=30 \\ y=cos32 \\ y_1=cos30=\frac{\sqrt{3}}{2} \end{gathered}[/tex]and m is the derivative of the function
[tex]cos\theta[/tex]evaluated at
[tex]\theta=30\text{ degrees}[/tex]In this regard, the derivative of cosine of thetat is given by
[tex]\frac{d}{d\theta}cos\theta=-sin\theta[/tex]then the slope m is given as
[tex]m=\frac{d}{d\theta}cos\theta_{\theta=30}=-s\imaginaryI n30=-\frac{1}{2}[/tex]Then by substituting this value and the above ones on the local linear approximation, we have
[tex]y-y_1=m\operatorname{\lparen}x-x_1)\Rightarrow cos32-\frac{\sqrt[]{3}}{2}=-\frac{1}{2}\left(32-30\right)[/tex]which gives
[tex]\begin{gathered} cos32-\frac{\sqrt{3}}{2}=-\frac{1}{2}\left(2\right) \\ cos32-\frac{\sqrt{3}}{2}=-1 \end{gathered}[/tex]then by moving square root of 3 over 2 to the right hand side, we get
[tex]cos32=-1+\frac{\sqrt[\placeholder{⬚}]{3}}{2}[/tex]