Respuesta :

Given the sequence:

[tex]50,61,74.42,\ldots[/tex]

The given sequence has a common ratio = r

[tex]r=\frac{61}{50}=\frac{74.42}{61}=1.22[/tex]

we will find the sum of the first 7 terms as follows:

[tex]\begin{gathered} S_n=\frac{a_1-a_1\cdot r^n}{1-r} \\ \\ a_1=50 \\ r=1.22 \\ n=7 \end{gathered}[/tex]

Substitute with a1, r, and n into the formula Sn

so,

[tex]S_7=\frac{50-50\cdot(1.22)^7}{1-1.22}=686.9797[/tex]

Round to the nearest hundredth

So, the answer will be sum = 686.98

ACCESS MORE
EDU ACCESS
Universidad de Mexico