Given the recursive formula for a geometric sequence find the common ratio the first five terms and the explicit formula

First, let find the first five terms using the recursive formula:
Then:
[tex]a_n=a_{n-1}\cdot2[/tex]Now,
a1 = 2
For a2 :
[tex]a_2=a_{2-1}\cdot2=a_1\cdot2=2\cdot2=4[/tex]a2= 4
For a3:
[tex]a_3=a_{3-1}\cdot2=a_2\cdot2=4\cdot2=8[/tex]a3 = 8
For a4:
[tex]a_4=a_{4-1}\cdot2=a_3\cdot2=8\cdot2=16[/tex]a4 = 16
For a5:
[tex]a_5=a_{5-1}\cdot2=a_4\cdot2=16\cdot2=32[/tex]a5 = 32
Therefore, the five first terms are 2,4,8,16,32.
Now, the common ratio is 2.
The explicit formula hast the next form:
[tex]a_n=a_1+(n-1)d[/tex]where d is the common ratio.
Replace using a1=2 and d=2
Therefore, the explicit formula is given by:
[tex]undefined[/tex]