Given that:
Maximum hours = 14 hours
Minimum hours = 10 hours
Period = 12
Find amplitude.
[tex]\begin{gathered} \text{Amplitude, a =}\frac{\max -\min }{2} \\ =\frac{14-10}{2} \\ =\frac{4}{2} \\ =2 \end{gathered}[/tex]
Find vertical shift, k.
[tex]\begin{gathered} k=\frac{\max +\min }{2} \\ =\frac{14+10}{2} \\ =\frac{24}{2} \\ =12 \end{gathered}[/tex]
Find b from the formula
[tex]P\text{eriod}=\frac{2\pi}{b}[/tex][tex]\begin{gathered} 12=\frac{2\pi}{b} \\ b=\frac{2\pi}{12} \\ =\frac{\pi}{6} \end{gathered}[/tex]
The june month means x = 6 has maximum daylight hours. So, we need to shift he maximum at x = 6.
Then h = 3.
Plug the obtained values into the formula:
[tex]y=a\sin (b(x-h))+k[/tex]
where y gives the number of daylight hours and x is the number of months since January.
[tex]y=2\sin (\frac{\pi}{6}(x-3))+12[/tex]