It says solve for the unknown, then find the measure of the angle given

The Solution:
Given:
In both figures, we are asked to find the unknown and the given angles.
Question(9):
By the Alternate Angles theorem,
[tex]\begin{gathered} (a+28)^o=2a^o \\ a+28=2a \end{gathered}[/tex]Subtract a from both sides, we get
[tex]\begin{gathered} a-a+28=2a-a \\ 28=a \\ a=28 \end{gathered}[/tex]To find angle MNP.
Substitute 28 for a in (a+28).
[tex]\angle MNP=a+28=28+28=56^o[/tex]Thus, the correct answers are:
[tex]\begin{gathered} a=28 \\ \angle MNP=56^o \end{gathered}[/tex]Question (10):
Again, by the Alternate Angles theorem,
[tex]\begin{gathered} 5y=2y+78 \\ Subtracting\text{ 2y from both sides, we get} \\ 5y-2y=2y-2y+78 \\ 3y=78 \end{gathered}[/tex]Dividing both sides by 3, we get
[tex]\begin{gathered} y=\frac{78}{3}=26 \\ y=26 \end{gathered}[/tex]Now, find angle WXZ.
[tex]\angle WXZ=5y=5\times26=130^o[/tex]Therefore, the correct answers are:
[tex]\begin{gathered} y=26 \\ \angle WXZ=130^o \end{gathered}[/tex]