We can find a using the trig. ratio
[tex]\sin \Theta=\frac{opposite}{\text{hypotenuse}}[/tex]From the diagram,
Theta= 45 opposite =17 hypotenuse = a
substitute the values into the formula
[tex]\sin 45=\frac{17}{a}[/tex]cross-multiply
[tex]a\sin 45=17[/tex]Divide both-side by sin45
[tex]a\text{ =}\frac{17}{\sin 45}[/tex]but sin45 = 1/√2
[tex]a=\frac{17}{\frac{1}{\sqrt[]{2}}}[/tex][tex]=17\times\frac{1}{\sqrt[]{2}}[/tex][tex]=\frac{17}{\sqrt[]{2}}[/tex]Rationalize the above
[tex]=\frac{17\sqrt[]{2}}{2}[/tex][tex]=\frac{17}{2}\sqrt[]{2}[/tex]