ANSWER:
(25.46, 28.34)
STEP-BY-STEP EXPLANATION:
Given:
n (sample size) = 50
m (mean) = 26.9
sd (standard deviation) = 6.06
The formula for the confidence interval is:
[tex]CI=m\pm t_{critical}\left(\frac{sd}{\sqrt{n}}\right)[/tex]The t- critical value at the 90% confidence level with 42 degrees of freedom is: 1.682.
Therefore, we replacing:
[tex]\begin{gathered} CI=26.9\pm1.682\cdot\left(\frac{6.06}{\sqrt{50}}\right) \\ CI=26.9+1.682\cdot\left(\frac{6.06}{\sqrt{50}}\right)=28.34 \\ CI=26.9-1.682\cdot\left(\frac{6.06}{\sqrt{50}}\right)=25.46 \end{gathered}[/tex]The 90% confidence interval is (25.46, 28.34)