Answer:
• Vinegar: 40 milliliters
• Italian dressing: 280 milliliters
Explanation:
Let the amount of vinegar to be used = x
Let the amount of Italian dressing to be used = y
The chef wants to make 320 milliliters of the mixture.
[tex]x+y=320\cdots(1)[/tex]The chef plans to mix 100% vinegar with Italian dressing(12% vinegar) to make 320 milliliters of a mixture that contains 23% vinegar.
[tex]\begin{gathered} (100\%\text{ of x\rparen+\lparen12\% of y\rparen=23\% of 320} \\ \implies x+0.12y=73.6\cdots(2) \end{gathered}[/tex]Thus, we have a system of linear equations.
[tex]\begin{gathered} x+y=320\operatorname{\cdots}(1) \\ x+0.12y=73.6\operatorname{\cdots}(2) \end{gathered}[/tex]Subtract (2) from (1):
[tex]0.88y=246.4[/tex]Divide both sides by 0.88
[tex]\begin{gathered} \frac{0.88y}{0.88}=\frac{246.4}{0.88} \\ y=280 \end{gathered}[/tex]Using equation (1), we solve for x:
[tex]\begin{gathered} x+y=320 \\ x+280=320 \\ x=320-280 \\ x=40 \end{gathered}[/tex]Therefore, the chef should use 40 milliliters of Vinegar and 280 milliliters of Italian dressing.