The Solution:
Given the function money in account A as below:
[tex]f(x)=9628(0.92)^x\ldots\text{eqn}(1)[/tex][tex]\begin{gathered} f(x)=\text{amount of money (in dollars)} \\ x=\text{ number of years.} \end{gathered}[/tex]
Part A:
Comparing eqn(1) with the general formula below:
[tex]f(x)=p(1-\frac{r}{100})^x[/tex]
We get
[tex]\begin{gathered} p=9628\text{ dollars} \\ \end{gathered}[/tex][tex]\begin{gathered} 1-\frac{r}{100}=0.9628 \\ \\ 1-0.9628=\frac{r}{100} \\ \\ \frac{r}{100}=0.0372 \end{gathered}[/tex]
Cross multiplying, we get
[tex]\begin{gathered} r=100\times0.0372 \\ r=3.72\text{\%} \end{gathered}[/tex]
Thus, the amount of money in account A is decreasing since 0.92 is less than 1.
It is decreasing at 3.72% per year.
Part B:
Given the table below:
To compare the rate of change of the amount of money in account A and account B.
We shall find the rate of change in the amount of money in account B.
By formula,
[tex]\begin{gathered} \text{ Rate of change =}\frac{y_2-y_1}{x_2-x_1} \\ \text{Where} \\ x_1=1,y_1=8972 \\ x_2=2,y_2=8074.80 \end{gathered}[/tex]
Putting these values in the formula, we get
[tex]\text{Rate of change =}\frac{8074.80-8972}{1-2}=\frac{-897.20}{-1}=897.20\text{ dollars}[/tex]
But for the money in account A, the rate of change per year is:
[tex]\text{ Rate=}\frac{8972-8074.80}{8972}\times100[/tex][tex]\text{ rate =}\frac{897.20}{8972}\times100=0.1\times100=10\text{\%}[/tex]
Thus, account B recorded a greater percentage change in the amount of money than account A, since the rate of account B (10%) is greater than 3.72% of account A.