Answer:
400 ft³
Explanation:
The volume of a square pyramid can be calculated as:
[tex]V=\frac{1}{3}a^2h[/tex]Where a is the side of the square and h is the height of the pyramid.
Now, we need to calculate the height using the slant height, so we will use the following equation:
[tex]h=\sqrt[]{s^2-\frac{a^2}{4}}[/tex]So, the height of the pyramid is equal to:
[tex]\begin{gathered} h=\sqrt[]{13^2-\frac{10^2}{4}} \\ h=\sqrt[]{169-\frac{100}{4}} \\ h=\sqrt[]{169-25} \\ h=\sqrt[]{144} \\ h=12 \end{gathered}[/tex]Then, the volume of the square pyramid is equal to:
[tex]\begin{gathered} V=\frac{1}{3}(10)^2(12) \\ V=\frac{1}{3}(100)(12) \\ V=400 \end{gathered}[/tex]Therefore, the answer is 400 ft³