Let l be the length of the rectangle and w be its width.
Since the length is 7 feet less than 5 times the width, and the perimeter is 94 feet we can set the following system of equations:
[tex]\begin{gathered} l=5w-7ft, \\ 2l+2w=94ft\text{.} \end{gathered}[/tex]Substituting the first equation in the second one we get:
[tex]2(5w-7ft)+2w=94ft\text{.}[/tex]Applying the distributive property we get:
[tex]10w-14ft+2w=94ft\text{.}[/tex]Adding like terms we get:
[tex]12w-14ft=94ft\text{.}[/tex]Adding 14ft to the above equation we get:
[tex]\begin{gathered} 12w-14ft+14ft=94ft+14ft, \\ 12w=108ft\text{.} \end{gathered}[/tex]Dividing the above equation by 12 we get:
[tex]\begin{gathered} \frac{12w}{12}=\frac{108ft}{12}, \\ w=9ft\text{.} \end{gathered}[/tex]Finally, substituting w=9ft in the first equation we get:
[tex]\begin{gathered} l=5\cdot9ft-7ft=45ft-7ft \\ =38ft\text{.} \end{gathered}[/tex]Answer: The length of the rectangle is 38ft and its width is 9ft.