ANSWER:
(29.48, 41.52)
STEP-BY-STEP EXPLANATION:
Given:
Mean (µ) = 35.5
Standard deviation (σ) = 7.2
Sample size (n) = 8
The confidence interval is 95%.
To determine the interval we have the following formula:
[tex]\begin{gathered} CI=\mu\pm ME \\ \\ ME=z_{tc}\cdot\frac{\sigma}{\sqrt{n}} \\ \\ \text{ We replacing:} \\ \\ CI=\mu+z_{tc}\cdot\frac{\sigma}{\sqrt{n}} \end{gathered}[/tex]
The value of critical z is given by the confidence interval since for 95% and for degrees of freedom 7 it is equal to 2.365
We substitute each value and calculate the interval, like this:
[tex]\begin{gathered} CI_{upper}=35.5+2.365\cdot\frac{7.2}{\sqrt{8}}=41.52 \\ \\ CI_{lower}=35.5-2.365\cdot\frac{7.2}{\sqrt{8}}=29.48 \end{gathered}[/tex]
So the 95% confidence interval is (29.48, 41.52)