Hi! I don’t know how to do this, can somebody help?

Given:
The function are,
[tex]g(x)=6x^2-5[/tex]and
[tex]f(x)=x^2[/tex]Explanation:
The function g(x) i a quadratic function and quadratic function is defined for all values of x. So domain of function f(x) is all real numbers.
The x-coordinate vertex of parabola ax^2 + bx + c = 0 is,
[tex]-\frac{b}{2a}[/tex]Fo the given quadratic equation a = 6, b = 0 and c = -5. So x-coordinate of vertex is,
[tex]-\frac{0}{2\cdot6}=0[/tex]Determine the y-coordinate of vertex.
[tex]\begin{gathered} g(0)=6\cdot(0)^2-5 \\ =-5 \end{gathered}[/tex]So minimum value of function is -5.
So range of function g(x) is,
[tex]\lbrack-5,\infty)[/tex]Domain and range in interval notation:
Domain:
[tex](-\infty,\infty)[/tex]Range:
[tex]\lbrack-5,\infty)[/tex]Domain and range in set notation:
Domain:
[tex]\mleft\lbrace x|x\in\mathfrak{\Re }\mright\rbrace[/tex]Range:
[tex]\mleft\lbrace y|y\ge-5\mright\rbrace[/tex]Domain and range in inequality notation:
Domain:
[tex]-\inftyRange:[tex]-5\leq y<\infty[/tex]On compare the function g(x) with f(x), it can be observed that value of factor a is 6, which means function stretch vertically by a factor of 6.
The value of k is -5, means function translated down by 5 units.
Answer:
When compared to f(x), g(x) is stretched verticaly by a factor of 6, and translated down 5 units.