Respuesta :

Given:

The function are,

[tex]g(x)=6x^2-5[/tex]

and

[tex]f(x)=x^2[/tex]

Explanation:

The function g(x) i a quadratic function and quadratic function is defined for all values of x. So domain of function f(x) is all real numbers.

The x-coordinate vertex of parabola ax^2 + bx + c = 0 is,

[tex]-\frac{b}{2a}[/tex]

Fo the given quadratic equation a = 6, b = 0 and c = -5. So x-coordinate of vertex is,

[tex]-\frac{0}{2\cdot6}=0[/tex]

Determine the y-coordinate of vertex.

[tex]\begin{gathered} g(0)=6\cdot(0)^2-5 \\ =-5 \end{gathered}[/tex]

So minimum value of function is -5.

So range of function g(x) is,

[tex]\lbrack-5,\infty)[/tex]

Domain and range in interval notation:

Domain:

[tex](-\infty,\infty)[/tex]

Range:

[tex]\lbrack-5,\infty)[/tex]

Domain and range in set notation:

Domain:

[tex]\mleft\lbrace x|x\in\mathfrak{\Re }\mright\rbrace[/tex]

Range:

[tex]\mleft\lbrace y|y\ge-5\mright\rbrace[/tex]

Domain and range in inequality notation:

Domain:

[tex]-\inftyRange:[tex]-5\leq y<\infty[/tex]

On compare the function g(x) with f(x), it can be observed that value of factor a is 6, which means function stretch vertically by a factor of 6.

The value of k is -5, means function translated down by 5 units.

Answer:

When compared to f(x), g(x) is stretched verticaly by a factor of 6, and translated down 5 units.

RELAXING NOICE
Relax