Using the formula for the slope of a line that passes through two given points we get:
[tex]\begin{gathered} m=\frac{-1-2}{4-0}, \\ m=\frac{-3}{4}, \\ m=-\frac{3}{4}\text{.} \end{gathered}[/tex]Now, using the point-slope formula for the equation of a line we get:
[tex]y-(-1)=-\frac{3}{4}(x-4)\text{.}[/tex]Taking the above equation to its slope-intercept form we get:
[tex]\begin{gathered} y+1=-\frac{3}{4}x-\frac{3}{4}(-4), \\ y=-\frac{3}{4}x+3-1, \\ y=-\frac{3}{4}x+2 \end{gathered}[/tex]Answer:
The point-slope form is:
[tex]y-(-1)=-\frac{3}{4}(x-4)\text{.}[/tex]The slope-intercept form is:
[tex]y=-\frac{3}{4}x+2.[/tex]