The expression we have is:
[tex]2=-3f+\frac{1}{5}RB[/tex]Steps to solve for B:
Step 1. Add 3f to both sides of the equation:
[tex]\begin{gathered} 2+3f=-3f+3f+\frac{1}{5}RB \\ 2+3f=\frac{1}{5}RB \end{gathered}[/tex]Step 2. Multiply both sides by 5 to eliminate the 1/5 on the right side:
[tex]\begin{gathered} 5(2+3f)=5(\frac{1}{5}RB) \\ 5(2+3f)=RB \end{gathered}[/tex]Step 3. Divide both sides by R to left B alone in the right side:
[tex]\begin{gathered} \frac{5(2+3f)}{R}=\frac{RB}{R} \\ \frac{5(2+3f)}{R}=B \end{gathered}[/tex]Answer:
[tex]\frac{5(2+3f)}{R}=B[/tex]