Identify the x and Y intercepts of the graph of the function.

we have the function
[tex]f(x)=-3\lvert x-2\rvert-1[/tex]Remember that
y-intercept (is the value of the function f(x) when the value of x=0)
so
For x=0
substitute in the given function
[tex]\begin{gathered} f(x)=-3\lvert0-2\rvert-1 \\ f(x)=-3\lvert-2\rvert-1 \\ f(x)=-3(2)-1 \\ f(x)=-7 \end{gathered}[/tex]so
Part 2
x-intercept (is the value of x when the value of the function f(x)=0
so
For f(x)=0
substitute
[tex]\begin{gathered} -3\lvert x-2\rvert-1=0 \\ -3\lvert x-2\rvert=1 \\ \lvert x-2\rvert=-\frac{1}{3} \end{gathered}[/tex]this equation has no solution (the absolute value of any number cannot be a negative number)
that means