Identify and Set Up
We are given a question on trigonometric identities.
Our approach is to:
First, we resolve the identity, sec,
- Get the sides and angles of our triangles
- Resolve the other identities.
Execute
[tex]\sec O=\frac{1}{\cos O}=\frac{h}{a}=\frac{13}{12}[/tex]We now have for ourselves a right angled triangle with hypothenuse 13 and adjacent 12.
From this, we know that the opposite side is:
[tex]x=\sqrt[]{13^2-12^2}=\sqrt[]{25}=5[/tex]A)
Tan O
[tex]\tan 0=\frac{\text{opp}}{\text{hyp}}=\frac{5}{12}[/tex]B)
Sin2O
[tex]\sin 2O=2\sin O\cos O[/tex]Hence, we have to find sin O and cos O
[tex]\begin{gathered} \sin O=\frac{\text{opp}}{\text{hyp}}=\frac{5}{13} \\ \cos O=\frac{\text{adj}}{\text{hyp}}=\frac{12}{13} \end{gathered}[/tex]Hence, we have:
[tex]undefined[/tex]