Respuesta :

Ok, so

We got the function g:

[tex]g=\mleft\lbrace(-9,-4\mright),(4,1),(5,8),(7,5)\}[/tex]

First, let's find

[tex]g^{-1}(5)[/tex]

The points we're going to analyze are the next one:

As you can see, the value of x which makes that g(x) equals to 5, is 7.

So,

[tex]g^{-1}(5)=7[/tex]

Now, we have h(x):

[tex]h(x)=2x-9[/tex]

To find the inverse, we solve that equation for x:

[tex]\begin{gathered} y=2x-9 \\ y+9=2x \\ x=\frac{y+9}{2} \\ \\ h^{-1}(x)=\frac{x+9}{2} \end{gathered}[/tex]

So that's the inverse of h(x).

Finally, we have to find:

[tex](h^{-1}\circ h)(2)[/tex]

This is the same that if we write:

[tex]h^{-1}(h(2))[/tex]

So we're going to evaluate the inverse function, in h(2).

We can find h(2) replacing:

[tex]\begin{gathered} h(x)=2x-9 \\ h(2)=2(2)-9 \\ h(2)=-5 \end{gathered}[/tex]

Now, evaluate:

[tex]h^{-1}(-5)[/tex]

This is:

[tex]\begin{gathered} h^{-1}(x)=\frac{x+9}{2} \\ h^{-1}(-5)=\frac{-5+9}{2} \\ h^{-1}(-5)=\frac{4}{2}=2 \end{gathered}[/tex]

Therefore,

[tex](h^{-1}\circ h)(2)=2[/tex]

Ver imagen MonalisaZ129377
RELAXING NOICE
Relax