Solution:
(L) Given the equations;
[tex]\begin{gathered} x+y=10\ldots\ldots\ldots\ldots\text{.equation}1 \\ x=2y+1\ldots\ldots\ldots\ldots equation2 \end{gathered}[/tex]We would substitute equation 2 in equation1, we have;
[tex]\begin{gathered} x+y=10 \\ 2y+1+y=10 \\ \text{Collect like terms;} \\ 3y=10-1 \\ 3y=9 \\ \text{Divide both sides by 3;} \\ \frac{3y}{3}=\frac{9}{3} \\ y=3 \end{gathered}[/tex]Then, substitute the value of y in equation 2, we have;
[tex]\begin{gathered} x=2y+1 \\ x=2(3)+1 \\ x=6+1 \\ x=7 \end{gathered}[/tex]Hence, the solution of the system of equations is;
[tex]x=7,y=3[/tex]