Respuesta :

We can convert rectangular coordinates of the form (x, y) to polar coordinates (r, θ) by means of the following formulas:

[tex]\begin{gathered} r=\sqrt[]{x^2+y^2} \\ \end{gathered}[/tex][tex]\theta=\tan ^{-1}(\frac{y}{x})[/tex]

In this case, we are given the point (5, 7), by replacing 5 for x and 7 for y, we get:

[tex]r=\sqrt[]{5^2+7^2}=\sqrt[]{25+49}=\sqrt[]{74}[/tex][tex]\theta=\tan ^{-1}(\frac{7}{5})=54.46[/tex]

in polar coordinates, we usually give the value of θ in radians, we've calculated θ in degrees, then we have to convert it, like this:

[tex]\theta=54.46\times\frac{\pi}{180}=0.95[/tex]

Then, the given point in polar coordinates is (√74, 0.95)

ACCESS MORE
EDU ACCESS
Universidad de Mexico