Give the equation of the line in slope intercept form that goes through the points

1. Use the next formula to find the slope:
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex][tex]m=\frac{-4-3}{6-(-5)}=\frac{-7}{6+5}=-\frac{7}{11}[/tex]Slope: m= -7/11
2. Use one of the points and the slope to find the y-intercept (b):
[tex]\begin{gathered} y=mx+b \\ \\ (-5,3) \\ y=3 \\ x=-5 \\ m=-\frac{7}{11} \\ \\ 3=-\frac{7}{11}(-5)+b \\ 3=\frac{35}{11}+b \\ \\ 3-\frac{35}{11}=b \\ \\ \frac{33-35}{11}=b \\ \\ -\frac{2}{11}=b \end{gathered}[/tex]3. Use the slope and y-intercept t write the equation in slope-intercept form:
[tex]\begin{gathered} y=mx+b \\ \\ y=-\frac{7}{11}x-\frac{2}{11} \end{gathered}[/tex]Then, the equation of the line is: y= -7x/11 - 2/11