Respuesta :

step 1

Find out the value of

[tex]\tan (-\frac{2\pi}{3})[/tex]

Remember that

2pi/3=2(180)/3=120 degrees

the angle belonging to the third quadrant

the tangent in III quadrant is positive

so

tan(-2pi/3)=tan(180-120)=tan(60)

and

[tex]\begin{gathered} \tan (60^o)=\sqrt[]{3} \\ \tan (-\frac{2\pi}{3})=\sqrt[]{3} \end{gathered}[/tex]

step 2

Find out the value of

[tex]\sin (\frac{7\pi}{4})[/tex]

we have that

7pi/4=7*180/4=315 degrees

the angle lies on the IV quadrant

the sine is negative

sin(7pi/4)=sin (315)=-sin (360-315)=-sin(45)

[tex]\begin{gathered} \sin (45^o)=\frac{\sqrt[]{2}}{2} \\ \sin \text{ (}\frac{7\pi}{4})=-\frac{\sqrt[]{2}}{2} \end{gathered}[/tex]

step 3

Find out the value of

[tex]\sec (-\pi)[/tex]

sec(-pi)=sec(pi)=1/cos(pi)=1/-1=-1

step 4

substitute the given values in the original expression

[tex]\frac{\sqrt[]{3}}{\frac{-\sqrt[]{2}}{2}}-(-1)[/tex][tex]-\frac{2\sqrt[]{3}}{\sqrt[]{2}}+1=\frac{-2\sqrt[]{3}+\sqrt[]{2}}{\sqrt[]{2}}[/tex]

simplify

[tex]\frac{-2\sqrt[]{3}+\sqrt[]{2}}{\sqrt[]{2}}\cdot\frac{\sqrt[]{2}}{\sqrt[]{2}}=\frac{-2\sqrt[]{6}+2}{2}=-\sqrt[]{6}+1[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico