First, let's put the info into symbols:
[tex]\begin{gathered} X_{FeBr_2}=\text{ 6.15*10}^{-2} \\ \end{gathered}[/tex]As the mole fractions have to add up to 1, we can calculate the water mole fraction, substracting:
[tex]X_{H_2O}=\text{ 1-6.15*10}^{-2}=0.9385[/tex]If we make the supposition that we have 1 mole of the solution, we would have the next quantities of each substance:
[tex]6.15*10^{-2}\text{ moles of FeBr}_2\text{ and 0.9385 moles of water. }[/tex]Now, we can convert these moles into mass through the molecular weight of each substance:
[tex]\begin{gathered} M.W\text{ of water: 2*1+16=18 g/mole} \\ M.W.\text{ of iron \lparen II\rparen bromide: 56+80*2=216 g/mole} \\ \\ 6.15*10^{-2}moles\text{ FeBr}_2*\frac{216\text{ g}}{1\text{ mole}}=\text{ 13.284 g FeBr}_2 \\ \\ 0.9385\text{ moles H}_2O\text{ * }\frac{18\text{ g}}{1\text{ mole}}=16.893\text{ g H}_2O \end{gathered}[/tex]Now, we can calculate the mass percentage, because we have the mass of the substrate and the mass of the solution (the addition of water and iron (II) bromide):
[tex]\%\text{ m/m FeBr}_2=\frac{13.284\text{ g}}{13.284g+16.893g}*100=44.020\text{ \% m/m}[/tex]The answer is that the %m/m of iron bromide in the solution is 44.020%