Answer:
√65 units.
Explanation:
The distance between two points (x1,y1) and (x2,y2) on the coordinate plane is calculated using the formula below:
[tex]Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]Given the points: (-4,-1) and (3,3).
[tex]\begin{gathered} (x_1,y_1)=(-4,-1) \\ (x_2,y_2)=(3,3) \\ \implies Distance=\sqrt[]{(3-(-4))^2+(3-(-1))^2} \end{gathered}[/tex]We simplify:
[tex]\begin{gathered} Distance=\sqrt[]{(3+4)^2+(3+1)^2}=\sqrt[]{7^2+4^2}=\sqrt[]{49+16} \\ =\sqrt[]{65} \end{gathered}[/tex]The distance between the two points is √65 units.