70 ways
Explanation:This problem bothers on combination. According to combination formula;
[tex]nC_r=\frac{n!}{(n-r)!}[/tex]If Kristen's financial advisor has given her a list of 8 potential investments and has asked her to select and rank her favorite four, this can be expressed as;
[tex]\begin{gathered} 8C_4=\frac{8!}{(8-4)!4!} \\ 8C_4=\frac{8!}{4!4!} \\ 8C_4=\frac{8\times7\times6\times5\times4!}{4!\times4\times3\times2} \\ 8C_4=\frac{8\times7\times6\times5}{24} \\ 8C_4=\frac{1680}{24} \\ 8C_4=70\text{ways} \end{gathered}[/tex]Hence the number of different ways Kristen can rank the for investments is 70 ways