Step 1
State the formula for the amount of compound interest
[tex]A=P(1+\frac{r}{n})^{nt}[/tex]where;
[tex]\begin{gathered} P=deposited\text{ money} \\ r=rate=\frac{4.4}{100}=0.044 \\ t=12years \\ n=2 \\ A=10336.84 \end{gathered}[/tex]Step 2
Find how much she deposited
[tex]10336.84=P(1+\frac{0.044}{2})^{2\times12}[/tex][tex]\begin{gathered} 10336.84=P(1.022)^{24} \\ \frac{\begin{equation*}P(1.022)^{24}\end{equation*}}{(1.022)^{24}}=\frac{10336.84}{(1.022)^{24}} \\ P=\text{ \$6131.49382} \\ P\approx\text{ \$6131} \end{gathered}[/tex]Hence the amount she deposited to the nearest whole number is;
[tex]P=\text{\$6131}[/tex]