Respuesta :

...

SOLUTION

Given the figure below;

The radius of the inscribed circle is DE;

[tex]\begin{gathered} To\text{ determine DE;} \\ CE\text{ is divided into CD:DE}\rightarrow2:1 \\ DE=\frac{1}{3}\times CE \\ DE=\frac{1}{3}\times8.7 \\ DE=2.9 \\ The\text{ radius of the inscribed circle is 2.9} \end{gathered}[/tex]

The radius of the circumscribed circle is CD;

[tex]\begin{gathered} To\text{ determine CD:} \\ CD=\frac{2}{3}\times CE \\ CD=\frac{2}{3}\times8.7=5.8 \\ The\text{ radius of the circumscribed circle is 5.8} \end{gathered}[/tex]

Ver imagen JaelN492795
RELAXING NOICE
Relax