Respuesta :

Part a

we have the function

[tex]f(t)=\log_2(t)[/tex]

Find out the inverse

step 1

Let

y=f(t)

[tex]y=\operatorname{\log}_2(t)[/tex]

step 2

Exchange the variables (y for t and t for y)

[tex]t=\log_2y[/tex]

step 3

Isolate the variable y

Apply the definition of logarithm

[tex]\begin{gathered} 2^t=y \\ y=2^t \\ f^{-1}(t)=2^t \end{gathered}[/tex]

Part B

we have the function

[tex]g(t)=\frac{1}{t-2}[/tex]

Find out the inverse of function g(t)

[tex]y=\frac{1}{t-2}[/tex]

Exchange the variables

[tex]t=\frac{1}{y-2}[/tex]

Isolate the variable y

[tex]\begin{gathered} t(y-2)=1 \\ y-2=\frac{1}{t} \\ y=\frac{1}{t}+2 \\ \\ g^{-1}(t)=\frac{1}{t}+2 \end{gathered}[/tex]

The domain of the inverse function is all real numbers except for t=0

so

interval (-infinite,0) U (0, infinite)

RELAXING NOICE
Relax