Please help me solve this problem step by step. I don’t get it

Part a
we have the function
[tex]f(t)=\log_2(t)[/tex]Find out the inverse
step 1
Let
y=f(t)
[tex]y=\operatorname{\log}_2(t)[/tex]step 2
Exchange the variables (y for t and t for y)
[tex]t=\log_2y[/tex]step 3
Isolate the variable y
Apply the definition of logarithm
[tex]\begin{gathered} 2^t=y \\ y=2^t \\ f^{-1}(t)=2^t \end{gathered}[/tex]Part B
we have the function
[tex]g(t)=\frac{1}{t-2}[/tex]Find out the inverse of function g(t)
[tex]y=\frac{1}{t-2}[/tex]Exchange the variables
[tex]t=\frac{1}{y-2}[/tex]Isolate the variable y
[tex]\begin{gathered} t(y-2)=1 \\ y-2=\frac{1}{t} \\ y=\frac{1}{t}+2 \\ \\ g^{-1}(t)=\frac{1}{t}+2 \end{gathered}[/tex]The domain of the inverse function is all real numbers except for t=0
so