f(x) = x-3, g(x) = 6x-7, h(x) = 2 (to the power x)a) work our the value of x when f(x) = 0.5b) Fing g inverse (2)c) work out the value of x when h(x) = f(11)

Respuesta :

The given functions are

[tex]\begin{gathered} f(x)=x-3 \\ \\ g(x)=6x-7 \\ \\ h(x)=2^x \end{gathered}[/tex]

a)

Since f(x) = 0.5

Then equate x - 3 by 0.5

[tex]x-3=0.5[/tex]

Add 3 to both sides

[tex]\begin{gathered} x-3+3=0.5+3 \\ x=3.5 \end{gathered}[/tex]

The value of x is 3.5

b)

To find the inverse of g do these steps

1. Replace g(x) by y

[tex]y=6x-7[/tex]

2. Switch x and y

[tex]x=6y-7[/tex]

3. Solve to find y

[tex]\begin{gathered} x+7=6y-7+7 \\ x+7=6y \\ \frac{x+7}{6}=y \\ \\ y=\frac{x+7}{6} \end{gathered}[/tex]

4. Replace y by g^(-1)

[tex]g^{-1}(x)=\frac{x+7}{6}[/tex]

Substitute x by 2

[tex]g^{-1}(2)=\frac{2+7}{6}=\frac{9}{6}=\frac{3}{2}=1.5[/tex]

The value of g inverse of 2 is 1.5

c)

Find at first f(11)

[tex]\begin{gathered} f(11)=11-3 \\ f(11)=8 \end{gathered}[/tex]

Equate h(x) by 8

[tex]2^x=8[/tex]

Since 8 = 2 x 2 x 2, then

[tex]8=2^3[/tex]

Replace 8 by 2^3

[tex]2^x=2^3[/tex]

By using the rule of equal bases (their powers are equal), then

[tex]x=3[/tex]

The value of x is 3

ACCESS MORE
EDU ACCESS