The given functions are
[tex]\begin{gathered} f(x)=x-3 \\ \\ g(x)=6x-7 \\ \\ h(x)=2^x \end{gathered}[/tex]a)
Since f(x) = 0.5
Then equate x - 3 by 0.5
[tex]x-3=0.5[/tex]Add 3 to both sides
[tex]\begin{gathered} x-3+3=0.5+3 \\ x=3.5 \end{gathered}[/tex]The value of x is 3.5
b)
To find the inverse of g do these steps
1. Replace g(x) by y
[tex]y=6x-7[/tex]2. Switch x and y
[tex]x=6y-7[/tex]3. Solve to find y
[tex]\begin{gathered} x+7=6y-7+7 \\ x+7=6y \\ \frac{x+7}{6}=y \\ \\ y=\frac{x+7}{6} \end{gathered}[/tex]4. Replace y by g^(-1)
[tex]g^{-1}(x)=\frac{x+7}{6}[/tex]Substitute x by 2
[tex]g^{-1}(2)=\frac{2+7}{6}=\frac{9}{6}=\frac{3}{2}=1.5[/tex]The value of g inverse of 2 is 1.5
c)
Find at first f(11)
[tex]\begin{gathered} f(11)=11-3 \\ f(11)=8 \end{gathered}[/tex]Equate h(x) by 8
[tex]2^x=8[/tex]Since 8 = 2 x 2 x 2, then
[tex]8=2^3[/tex]Replace 8 by 2^3
[tex]2^x=2^3[/tex]By using the rule of equal bases (their powers are equal), then
[tex]x=3[/tex]The value of x is 3