Find the first four terms of the sequence defined below, where n represents the position of a term in the sequence. Start with n = 1.an = –3n − 3

Solution:
Given:
To find the first four terms of the sequence which is defined as
[tex]a_n=-3n-3[/tex]First term: n=1
Thus,
[tex]\begin{gathered} a_1=-3(1)-3 \\ \Rightarrow a_1=-6 \end{gathered}[/tex]second term: n=2
[tex]\begin{gathered} a_2=-3(2)-3 \\ \Rightarrow a_2=-9 \end{gathered}[/tex]third term: n=3
[tex]\begin{gathered} a_3=-3(3)-3 \\ \Rightarrow a_3=-12 \end{gathered}[/tex]fourth term: n = 4
[tex]\begin{gathered} a_4=-3(4)-3 \\ \Rightarrow a_4=-15 \end{gathered}[/tex]Hence, the first four terms of the sequence are
[tex]-6,\text{ -9, -12, -15}[/tex]