Respuesta :

Given the identity:

[tex](\cos x-\sin x)^2=1-\sin 2x[/tex]

The proof of the identity will be as follows:

We will begin from the left-hand side by expanding the square

[tex]LHS=(\cos x-\sin x)^2=\cos ^2x-2\sin x\cos x+\sin ^2x[/tex]

Combine the first and the last terms, which will be the Pythagorean identity

[tex]\begin{gathered} =(\sin ^2x+\cos ^2x)-2\sin x\cos x \\ =1-2\sin x\cos x \end{gathered}[/tex]

Note, note the last term (2 sin x cos x) = sin 2x

So,

[tex]\begin{gathered} =1-\sin 2x=R\mathrm{}H\mathrm{}S \\ \end{gathered}[/tex]

Otras preguntas

ACCESS MORE
EDU ACCESS