Given the identity:
[tex](\cos x-\sin x)^2=1-\sin 2x[/tex]The proof of the identity will be as follows:
We will begin from the left-hand side by expanding the square
[tex]LHS=(\cos x-\sin x)^2=\cos ^2x-2\sin x\cos x+\sin ^2x[/tex]Combine the first and the last terms, which will be the Pythagorean identity
[tex]\begin{gathered} =(\sin ^2x+\cos ^2x)-2\sin x\cos x \\ =1-2\sin x\cos x \end{gathered}[/tex]Note, note the last term (2 sin x cos x) = sin 2x
So,
[tex]\begin{gathered} =1-\sin 2x=R\mathrm{}H\mathrm{}S \\ \end{gathered}[/tex]