To solve
[tex](t+2)^{\frac{3}{4}}=2[/tex]for t, first, we raise the equation to the power of four:
[tex](t+2)^3=2^4\text{.}[/tex]Simplifying we get:
[tex](t+2)^3=16.[/tex]Therefore:
[tex]t+2=\sqrt[3]{16}.[/tex]Finally, we get:
[tex]t=\sqrt[3]{16}-2=\sqrt[3]{8\cdot2}-2=2\sqrt[3]{2}-2=2(\sqrt[3]{2}-1)\text{.}[/tex]Answer:
[tex]t=2(2^{\frac{1}{3}}-1)\text{.}[/tex]